Successive Galerkin Approximations to the Nonlinear Optimal Control of an Underwater Robotic Vehicle
نویسندگان
چکیده
The application of a new nonlinear optimal control strategy to the station-keeping control of an underwater robotic vehicle is considered. The control approach described and demonstrated here is based upon the numerical approximation of solutions to the Hamilton-Jacobi-Bellman equation. These solutions are computed by an iterative application of a Galerkin-type method. Preliminary simulation results demonstrating the application of this approach to the control of an underwater vehicle in the horizontal plane are presented.
منابع مشابه
Nonlinear Optimal Control Techniques Applied to a Launch Vehicle Autopilot
This paper presents an application of the nonlinear optimal control techniques to the design of launch vehicle autopilots. The optimal control is given by the solution to the Hamilton-Jacobi-Bellman (HJB) equation, which in this case cannot be solved explicity. A method based upon Successive Galerkin Approximation (SGA), is used to obtain an approximate optimal solution. Simulation results invo...
متن کاملA Practical Algorithm for Designing Nonlinear H 1 Control Laws
In this paper we describe a novel approach for designing nonlinear H 1 control laws. These robust controllers are obtained by numerically approximating the solution to the Hamilton-Jacobi-Isaacs (HJI) equation and result in nonlinear control laws in feedback form. The approximation is accomplished via a two-step successive Galerkin approximation scheme. An application of the technique to the co...
متن کاملNonlinear Robust Tracking Control of an Underwater Vehicle-Manipulator System
This paper develops an improved robust multi-surface sliding mode controller for a complicated five degrees of freedom Underwater Vehicle-Manipulator System with floating base. The proposed method combines the robust controller with some corrective terms to decrease the tracking error in transient and steady state. This approach improves the performance of the nonlinear dynamic control scheme a...
متن کاملDesign of Robust Finite-Time Nonlinear Controllers for a 6-DOF Autonomous Underwater Vehicle for Path Tracking Objective
In this paper, kinematic and dynamic equations of a 6-DOF (Degrees Of Freedom) autonomous underwater vehicle (6-DOF AUV) are introduced and described completely. By developing the nonsingular terminal sliding mode control method, three separate groups of control inputs are proposed for the autonomous underwater vehicle subjected to uncertainties including parametric uncertainties, unmodeled dyn...
متن کاملOPTIMIZED FUZZY CONTROL DESIGN OF AN AUTONOMOUS UNDERWATER VEHICLE
In this study, the roll, yaw and depth fuzzy control of an Au- tonomous Underwater Vehicle (AUV) are addressed. Yaw and roll angles are regulated only using their errors and rates, but due to the complexity of depth dynamic channel, additional pitch rate quantity is used to improve the depth loop performance. The discussed AUV has four aps at the rear of the vehicle as actuators. Two rule bases...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998